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Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators

A. Carpio*
Departamento de Matema´tica Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain

~Received 6 October 2003; published 12 April 2004!

We present a stability theory for kink propagation in chains of coupled oscillators and a different algorithm
for the numerical study of kink dynamics. The numerical solutions are computed using an equivalent integral
equation instead of a system of differential equations. This avoids uncertainty about the impact of artificial
boundary conditions and discretization in time. Stability results also follow from the integral version. Stable
kinks have a monotone leading edge and move with a velocity larger than a critical value which depends on the
damping strength.
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I. INTRODUCTION

The dynamics of waves in chains of coupled oscillators
the key to understanding the motion of defects in ma
physical and biological problems: motion of dislocatio
@1,2# or cracks@3# in crystalline materials, atoms adsorbed
a periodic substrate@4#, motion of electric field domains an
domain walls in semiconductor superlattices@5#, pulse
propagation through myelinated nerves@6# or cardiac cells
@7# and so on. A peculiar feature of these spatially discr
systems is that wave fronts and pulses get pinned for en
intervals of a control parameter such as an external fo
Typically, wave fronts do not move unless the external fo
surpasses a control value. Such is the case with the static
dynamic Peierls stresses in dislocation dynamics@2,8# or the
dynamic and static friction coefficients@9# in continuum me-
chanics. Pinning and motion of wave fronts also explain
relocation of static electric field domains and the se
oscillations of the current in semiconductor superlattices@5#.

Wave front motion in systems of nonlinear oscillato
modeling these phenomena are easier to analyze in the o
damped case, and less so if inertia is important. In the p
ence of inertia, the wrong choice of boundary conditions
the numerical method may suppress important solutions
the original system or yield spurious oscillations. Thus t
problems that are important in all spatially discrete syste
acquire even more importance: how do we find wave fro
and what are their stability properties?

We have solved the first problem in a recent work@10# by
choosing a damped system of oscillators with a piecew
linear source term, see also Refs.@3,11,12#. Our results show
explicitly the existence of kinks with oscillatory profiles fo
systems with little or no damping. In the latter case, th
wave fronts have at least one tail with nondecaying osci
tions that extend to infinity. Depending on the control para
eter, branches of oscillatory wave fronts may exist, coex
ing for entire intervals of the external force and ev
coexisting with pinned wave front solutions. These fac
long-lived oscillatory profiles and coexistence of wave fro
branches, highlight the importance of ascertaining the sta
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ity properties of these solutions. This is not easy and
many results are known.

To be precise, let us consider oscillator chain:

mun91aun85K~un1122un1un21!2V8~un!1W. ~1!

We nondimensionalize the model by choosing the time sc
Ama2/vm, wherea is the interatomic distance,m is the mass,
andvm the strength of the on-site potential. For a piecew
parabolic potential, the nondimensional equation is

un91gun85D~un1122un1un21!2g~un!1F, ~2!

g~s!5H s, s,
1

2

s21, s>
1

2
.

~3!

Here g and D are the ratios between friction and inerti
forces, and between the strengths of the harmonic and on
potentials, respectively.F5Wa/vm . Atkinson and Cabrera
@11# conjectured that only two branches of kinks are sta
for Eqs.~2!–~3!.

~1! A branch of static kinks for values of the control p
rameteruFu below a static thresholdFcs(D).

~2! A branch of traveling kinks foruFu above a dynamic
thresholdFcd(g,D)<Fcs(D), with speedsc larger than a
minimum speedccd(g,D). This family has a distinctive fea
ture compared to eventual slower waves@10#. The leading
edge of the kink is monotone whereas the trailing edge m
develop oscillations.

The valuesFcs and Fcd correspond to the static and dy
namic Peierls stresses of the literature on dislocations@2#. In
the overdamped limitg→`, Fcs5Fcd and stable wave
fronts can be found with arbitrarily small speeds@13#.

In a previous paper@10#, we checked numerically the va
lidity of Atkinson and Cabrera’s conjecture. This is a delica
affair and further analytical work is clearly desirable. In fa
most numerical studies of kink propagation truncate the
finite chain to a finite chain, fix some boundary condition
and then use a Runge-Kutta solver~or variants! to investigate
the dynamics of kinklike initial configurations. For instanc
©2004 The American Physical Society01-1
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A. CARPIO PHYSICAL REVIEW E 69, 046601 ~2004!
Peyrard and Kruskal@14# applied this procedure to stud
kinks in the conservative Frenkel-Kontorova model, inclu
ing friction near the ends of the truncated chain in an atte
to avoid reflections. On the other hand, our analytical w
@10# shows that traveling kinks oscillate with almost unifor
amplitude even for small damping. Then, artificial bounda
conditions and time discretization may greatly distort th
shape and dynamics. In fact, using Runge-Kutta method
solve Eq.~2! with constant boundary conditions genera
reflections at the boundary, as shown in Fig. 1, after a w
ing time depending on the size of the lattice. Such osci
tions end up distorting the right tail and may completely al
the shape of the kink giving rise to a complex oscillato
pattern.

A good way to avoid the spurious effects of inappropria
boundary conditions is to recast Eq.~2! as an integral equa
tion. Integral reformulations provide an analytical express
for the solutions of Eq.~2! which we use to develop numer
cal algorithms. Spurious pinning and spurious oscillatio
are suppressed. The introduction of these numerical meth
based on integral reformulations of Eq.~2! is one of our
main results.

The main analytical results of this paper concern the n
linear stability of stationary and traveling wave fronts
chains of oscillators. Besides leading to good numer
methods, we have also used the integral equation formula
to investigate the nonlinear stability of wave front patter
We provide a criterion to decide whether certain kinkli
initial configurations evolve into stable wave front pattern
In discrete overdamped models the nonlinear stability
traveling wave fronts follows from comparison principle
This strategy was applied to the study of domain walls
discrete drift-diffusion models for semiconductor superl
tices in Ref.@15#.

Common belief is that comparison principles do not ho
in models with inertia. This belief is wrong. How can w
assess the stability of traveling wave fronts in such mode
For large damping, we can directly compare solutions of
~2! using its equivalent formulation as an integral equat

FIG. 1. ~Color online! Trajectoryun(t) computed by solving a
truncated system of differential equations~dashed! and by integral
expressions~solid! for g50.02, D54, F50.1, n5270.
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thanks to the positivity of the Green functions. As the dam
ing decreases, we can ignore the oscillatory tails of the fro
and compare the monotone leading edges of the soluti
which drive their motion. The process of comparing so
tions is technically more complex than in the overdamp
case because the Green functions change sign, and the f
have oscillatory wakes. Summarizing, there are two key
gredients for stability. First, the leading edges of the fro
have to be monotone. Second, the Green functions of
linear problem must be positive for an initial time interval,
duration comparable to the time the front needs to adva
one position. This restricts the possible values of the pro
gation speed for small damping: only fast kinks are shown
be stable. Our methods are quite general and can be exte
to Frenkel-Kontorova models with smooth sources@16# at
the cost of technical complications.

The paper is organized as follows. In Sec. II we introdu
a numerical algorithm and discuss the stability of sta
kinks. The stability theory for traveling kinks is presented
Sec. III. In Sec. IV we discuss the role of oscillating Gre
functions in the appearance of static and dynamic thresh
due to coexistence of stable static and traveling waves
Sec. V we briefly comment on extensions to oscillator cha
with smooth cubic sources. Section VI contains our conc
sions. Basic details on the pertinent Green functions are
called in Appendixes A and B. Proofs of our main stabili
results can be found in Appendixes C and D.

II. STATIC KINKS

The stationary wave frontssn for Eq. ~2! increase from
s2`5F to s`511F and solve the second-order differen
equation

D~sn1122sn1sn21!2sn1H~sn2 1
2 !1F50 ~4!

in which H(x) is the Heaviside unit step function. Thes
fronts are translation invariant. We fix their position by se
ting s0, 1

2 ,s1. Then,sn5F1arn for n<0 andsn511F
2br2n for n>1, wherer 5(2D111A4D11)/2D. Insert-
ing these formulas in Eq.~4! for n50 andn51, we finda
andb. Our construction of the stationary frontssn is consis-
tent with the restrictions0, 1

2 ,s1 when uFu<Fcs(D). Fig-
ure 2~a! shows a static wave front forD54 andF50.05. As
D grows, the number of points in the transition layer betwe
the constants increases.

A. Stability

A stationary wave frontsn is stable for the dynamics~2!
when chains initially close tosn remain nearsn for all t
.0, as shown in Fig. 2. The initial states chosen in t
figure areun

05F1dn
0 when n<0, un

0511F1dn when n
>1 andun

15dn
1 . Both dn

1 and dn
0 are small random pertur

bations.
To find the stable profiles, we proceed as follows. Letun

0

and un
1 be the initial position and velocity of the chain. I

terms of Green functions calculated in Appendix A,un(t) is
given by Eq.~A12! with f k(t)5F1H„uk(t)2 1

2 …:
1-2
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un~ t !5(
k

Gnk
0 ~ t !uk

11(
k

Gnk
1 ~ t !uk

0

1E
0

t

(
k

Gnk
0 ~ t2z!HS uk~z!2

1

2Ddz

1FE
0

t

(
k

Gnk
0 ~ t2z!dz. ~5!

If initially uk
0, 1

2 for k<0, uk
0. 1

2 for k>1,

un~ t !5(
k

@Gnk
0 ~ t !uk

11Gnk
1 ~ t !uk

0#1E
0

t

(
k.0

Gnk
0 ~ t2z!dz

1FE
0

t

(
k

Gnk
0 ~ t2z!dz ~6!

as long asuk(t), 1
2 when k<0, uk(t). 1

2 when k>1. For
uFu,Fcs(D), the static wave frontsn with s0, 1

2 ,s1 is a
solution of Eq.~5! that satisfies

sn5(
k

Gnk
1 ~ t !sk1E

0

t

(
k.0

Gnk
0 ~ t2z!dz

1FE
0

t

(
k

Gnk
0 ~ t2z!dz ~7!

for all t.0. Subtracting Eq.~7! from Eq. ~6!, we obtain:

un~ t !2sn5(
k

@Gnk
0 ~ t !uk

11Gnk
1 ~ t !~uk

02sk!#. ~8!

This expression holds fort.0 providedun(t)2 1
2 does not

change sign for anyn and t.0. For which profilesun(t) is
this true? Let us select the initial state of the chain in the

(
2`

`

uun
02snu,M , (

2`

`

uun
1u,M , M,R minS 1,

1

C01C1
D

~9!

FIG. 2. ~Color online! Convergence to a static kinksn when
D54, g510, andF50.05: ~a! asterisksun(t), squaressn , ~b!
asterisksun8(t), squaressn850.
04660
t:

with R5min(us02
1
2u,s12

1
2) and C0 ,C1 to be defined below.

For g.0, we show in Appendix B thatuGnk
0 u<C0e2ht,

uGnk
1 u<C1e2ht with g.0. This boundedness property of th

Green functions and Eq.~9! yield

uun~ t !2snu<~C01C1!e2htM . ~10!

Then, uun(t)2snu,R and un(t)2 1
2 cannot change sign fo

any t.0. Moreover,un(t)→sn as t→0.
In summary, the static kinks are exponentially and asym

totically stable in the damped case. Their basin of attract
includes all initial configurationsun

0 andun
1 selected accord-

ing to Eq. ~9!. In the conservative case, the static kinks a
merely stable, but not asymptotically stable, because the
vious argument withg50, h50, C05C151 only yields
uun(t)2snu<2M for all times.

In the continuum limitD→`, the number of points in the
transition layer between constants increases and the dist
between points decreases. Then,s0 ands1 tend to 1

2 and the
set of states~9! attracted bysn shrinks asD grows. It be-
comes more likely that initial kinks in the chain propaga
for a while and finally become pinned at some shifted sta
kink vn5sn1 l , v2 l,

1
2 ,v2 l 11.

B. Numerical algorithm

Formula~5! can be used to compute numerically the d
namics of the chain. However, the computational cost
high, due to the integral terms and the Green functions
this section, we exploit the static front solutionssn to reduce
the cost and derive formulas forun(t) which clarify the dy-
namics of the chain.

We will focus on initial kinklike initial states that generat
ordered dynamics:uk(t)2 1

2 changes sign in an ordered wa
as the kink advances. Once the kink has passed, the con
ration of the chain is close to a shifted static kink. That
why we use static kinks to obtain simplified expressions
un(t). For instance, let us choose a piecewise constant in
profile un

05F for n<0 and un
1511F for n>1, with un

1

50. ForF.0, Fig. 3 shows thatu2k(t)2 1
2 change sign at

FIG. 3. ~Color online! Trajectoriesun(t), n58,4,0,24, . . .
whenD54, g50.4, F50.15.
1-3
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A. CARPIO PHYSICAL REVIEW E 69, 046601 ~2004!
time tk , k50,1, . . . , with t0,t1,•••,tk,•••. Eventu-
ally, the kink may get pinned at some static configuration a
this process stops at somek. We then use a slightly modified
version of the integral expression~7! for the static wave
fronts to successively remove the integral terms in Eq.~5!
and obtain simple formulas forun(t) similar to Eq.~8!. In
this way, we find a relatively cheap algorithm for the com
putation ofun(t).

Let us describe the algorithm forF>0 and an initial step-
like stateun

0 with u0
0, 1

2 ,u1
0 , as in Fig. 3. We must distin

guish two cases: 0,F<Fcs(D) andF.Fcs(D).

1. Case0ËFÏF cs„D…

In this case, the stationary wave fronts can be used
generate a faster algorithm for obtainingun(t). We remove
the integrals in Eq.~5! by using the static wave front solutio
of Eq. ~2!, sn , such thats0, 1

2 ,s1.
Initial stage.Formula~8! allows to computeun(t) up to

the time t0 at which u0(t)2 1
2 changes sign. Fort.t0 we

computeun(t) using as initial dataun(t0) andun8(t0) at t0.
The latter is obtained differentiating Eq.~8!:

un8~ t0!5(
k

FdGnk
0 ~ t0!

dt
uk

11
dGnk

1 ~ t0!

dt
~uk

02sk!G . ~11!

For t0,t<t1, Eq. ~5! becomes

un~ t !5(
k

@Gnk
0 ~ t2t0!uk8~ t0!1Gnk

1 ~ t2t0!uk~ t0!#

1E
t0

t

(
k.21

Gnk
0 ~ t2z!dz1FE

t0

t

(
k

Gnk
0 ~ t2z!dz.

~12!

Now, u21(t0), 1
2 ,u0(t0) and we must use the shifted st

tionary solutionvn5sn11, which satisfiesv21, 1
2 ,v0. Ob-

serving thatsn11 solves Eq.~2! with initial data sn11,0 at
time t0 we obtain the formula

sn115(
k

Gnk
1 ~ t2t0!sk111FE

t0

t

(
k

Gnk
0 ~ t2z!dz

1E
t0

t

(
k.21

Gnk
0 ~ t2z!dz. ~13!

Subtracting Eq.~13! from Eq. ~12! we find

un~ t !5sn111(
k

Gnk
0 ~ t2t0!uk8~ t0!

1(
k

Gnk
1 ~ t2t0!@uk~ t0!2sk11#, ~14!

up to the timet1 at whichu21(t)2 1
2 changes sign.

Generic step.Once we have computed the timet l at
which ul(t)2 1

2 changes sign, we calculate the new init
dataun(t l) andun8(t l):
04660
d

-

to

l

un~ t l !5sn1 l1(
k

Gnk
0 ~ t l2t l 21!uk8~ t l !

1(
k

Gnk
1 ~ t l2t l 21!@uk~ t l !2sk1 l #, ~15!

un8~ t l !5(
k

dGnk
0

dt
~ t l2t l 21!uk8~ t l !

1(
k

dGnk
1

dt
~ t l2t l 21!@uk~ t l !2sk1 l #. ~16!

Then the evolution of the chain fort.t l is given by the
formula

un~ t !5sn1 l 111(
k

Gnk
0 ~ t2t l !uk8~ t l !

1(
k

Gnk
1 ~ t2t l !@uk~ t l !2sk1 l 11#, ~17!

until either u2( l 11)(t)2 1
2 or u2 l(t)2 1

2 change sign. If
u2( l 11)(t)2 1

2 changes its sign at a timet l 11, we start a new
step usingsn1 l 11 to computeun(t). If u2 l(t)2 1

2 reverses its
sign at a timet l 11, we start a new step usingsn1 l 21 to
computeun(t).

2. Case FÌF cs„D…

In this case, it is convenient to remove the integral in E
~5! by using assn the static wave front solution of Eq.~2!
corresponding to an applied forceF5Fcs(D), and such that
s0, 1

2 ,s1. Recall that there are no stationary wave fronts
F.Fcs .

Initial stage.Subtracting Eq.~7! at Fcs(D) from Eq. ~6!
we find

un~ t !5sn1(
k

Gnk
0 ~ t !uk

11(
k

Gnk
1 ~ t !~uk

02sk!

1~F2Fcs!E
0

t

(
k

Gnk
0 ~ t2z!dz. ~18!

The remaining integral term can be removed by observ
that 1 is a solution of Eq.~2! with F50 and initial data
un(0)51, un8(0)50:

15(
k

Gnk
1 ~ t !1E

0

t

(
k

Gnk
0 ~ t2z!dz. ~19!

Multiplying Eq. ~19! by (F2Fcs) and inserting the result in
Eq. ~18! we obtain

un~ t !5sn1~F2Fcs!1(
k

Gnk
0 ~ t !uk

1

1(
k

Gnk
1 ~ t !@uk

02sk2~F2Fcs!# ~20!
1-4
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NONLINEAR STABILITY OF OSCILLATORY WAVE . . . PHYSICAL REVIEW E 69, 046601 ~2004!
up to the timet0 at which u0(t)2 1
2 changes sign. Fort

.t0:

un~ t !5sn111~F2Fcs!1(
k

Gnk
0 ~ t2t0!uk8~ t0!

1(
k

Gnk
1 ~ t2t0!@uk~ t0!2sk112~F2Fcs!#,

un8~ t0!5(
k

FdGnk
0 ~ t0!

dt
uk

11
dGnk

1 ~ t0!

dt
~uk

02sk2F1Fcs!G ,
~21!

up to the timet1 at whichu21(t)2 1
2 changes sign.

Generic step. Similar to the generic step forF<Fcs but
replacingsn by sn1(F2Fcs).

3. Numerical implementation

We will use Eqs.~17!, ~16!, and~21! to study the dynam-
ics of the chain in Sec. III. Due to translational invarian
Gnk

0 5Gn2k,0
0 andGnk

1 5Gn2k,0
1 . To calculateun(t), we only

need to computeGn0
0 (t), Gn0

1 (t) for a time interval@0,T#,
T<maxl ut l 112t l u and for unu<N, where N is sufficiently
large. We calculate the integralsGn0

0 (t), Gn0
1 (t),

dGn0
0 (t)/dt, anddGn0

1 (t)/dt by means of the Simpson rule
choosing a step smaller than the period of the oscillat
factors. The valueN is selected so as to make the error
troduced by the truncated series( un2ku<N sufficiently small.
This is possible because the Green functions and their
rivatives decay asun2ku grows.

A more general version of our algorithm will be present
elsewhere@16#.

III. STABILITY OF TRAVELING KINKS

In this section we introduce a strategy to study the sta
ity of traveling wave fronts in Eq.~2!.

Traveling wave fronts are constructed by insertingwn(t)
5w(n2ct) in Eq. ~2! to produce a nonlinear eigenvalu
problem for the profilew(x) and the speedc. Assuming
w(x), 1

2 for x,0 andw(x). 1
2 for x.0, the problem be-

comes linear. The wave profiles are computed as con
integrals, imposingw(0)5 1

2 to find a relationship betweenc
and F @11,10#. The law F(c) and the shape of the wav
profiles are controlled by the poles contributing to the co
tour integrals. The relevant poles depend on the strengt
the damping. For large damping, we have complex po
with large imaginary parts. The dependence lawF(c) is
monotonically increasing and the wave profiles are mo
tone. For small damping, poles with small imaginary pa
become relevant, in increasing number as the speedc de-
creases. The functionF(c) oscillates for small speeds. Dif
ferent oscillatory wave profiles with different speeds m
coexist for the sameF. At zero damping, those poles becom
real and the wave profiles develop nondecaying oscillatio
For some ranges of speeds, the waves constructed in this
violate the restrictionw(x), 1

2 for x,0 andw(x). 1
2 for x

.0. Those ranges should be investigated with a modi
04660
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technique allowing for a finite number of turning points.
Complex variable methods yield families of explicit wav

solutions but give no information on their stability. Numer
cal tests@10# and physical context@11# suggest the stability
of traveling kinks that have monotone leading edges a
large enough speeds. Figures 4–6 depict the wave pro
for decreasingg. We now confirm that these wave fronts a
stable. The traveling wavewn(t) is stable for the dynamics
of the chain when the solutionsun(t) of Eq. ~2! remain near
wn(t) for all t.0 if the initial statesun

0 , un
1 are chosen nea

wn(0),wn8(0). Controlling the evolution ofun(t) is more or
less difficult depending on the properties of the Green fu
tions. We distinguish two cases: positive Green functio
~large damping! and oscillatory Green functions~small
damping!.

A. Strong damping

For large dampingg2@4, we know that the wave fron
profiles are monotonically increasing and that the Gre

FIG. 4. ~Color online! For D54, g52.2, andF50.2: ~a! Com-
pared time evolution ofwn(t1t) ~dot-dashed line!, wn(t2t)
~dashed line!, and un(t) ~solid line! when n50,21,22, . . . , ~b!
Compared profilesun(T) ~circles!, wn(T6t) ~asterisks!, ~c! Com-
pared time evolution ofwn8(t6t) ~dot-dashed and dashed lines! and
un8(t) ~solid line!.

FIG. 5. ~Color online! Same as Fig. 4 whenF50.45.
1-5
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A. CARPIO PHYSICAL REVIEW E 69, 046601 ~2004!
functions are positive and decay exponentially in time~cf.
Appendix B!. The main result of this section is the followin
stability theorem, whose proof can be found in Appendix

Theorem.Let us select the wave front profile so th
wn(t)5w(n2ct2 1

2 ), with c,0, andF.0. If we choose
the initial states for Eq.~2!, un

1 andun
0 , in the set:

wn~2t!,un
0,wn~t!, 0,t!

1

2ucu
, ~22!

uwn8~2t!2un
1u!un

02wn~2t!,

uwn8~t!2un
1u!wn~t!2un

0 , ~23!

then

wn~ t2t!,un~ t !,wn~ t1t! ~24!

for all n and t.0.
In other words, if the initial oscillator configuration i

sandwiched between two wave front profiles with differe
phase shifts,wn(2t) and wn(t) ~with a sufficiently small
t), then the oscillator chain remains trapped between the
shifted profileswn(t2t) and wn(t2t) forever, provided
uun

12wn8(0)u is sufficiently small. This implies the dynamica
stability of the wave. The more involved argument explain
in Sec. III B for conservative dynamics can be used to pro
that the wave fronts are also asymptotically stable.

Furthermore, the basin of attraction of a particular trav
ing wave is larger than Eqs.~22! and~23!, as shown in Figs.
4 and 5 forF.Fcs(D). The initial oscillator configuration in
this figure is a step function,un

05F for n<0 and un
051

1F for n>1, with a superimposed small random distu
bance. The initial velocity profile fluctuates randomly abo
zero with a small amplitude. After an initial transient, th
trajectories get trapped between advanced wave frontswn(t
1t) and delayed wave frontswn(t2t). Moreover, they
converge to a shifted wave frontwn(t1a) as t→`.

FIG. 6. ~Color online! Trajectoriesun(t) when D54. ~a! g
50.2, F50.2, ~b! g50.2, F50.45, ~c! g50.1, F50.2, ~d! g
50.1, F50.45.
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B. Conservative dynamics

For small dampingg2!4, we know that the kink profiles
develop oscillations in the trailing edge~see Fig. 6! and that
the Green functions oscillate and change sign~cf. Appendix
B!. However,Gnk

0 (t) and Gnk
1 (t) are positive for 0<t<T*

5T(g,D). This critical time T* plays a key role for the
stable propagation of waves. We will show in this secti
that kinks are stable provideducu.1/T* . Our argument does
not say anything about the stability of kinks with less
speeds. Moreover,T* →0 and our lower bound on the wav
front velocity tends to infinity, in the continuum limit.

We show in Appendix B that a rough estimate forT* is
provided by 2p/A4(114D)2g2. For g50 andD54, as
chosen in our Figs. 6 and 7,T* .1. Then, kinks withucu
.1 are stable. In Refs.@11,10#, stability was conjectured for
speeds larger than the last minimum ofF(c), which is at-
tained atccd;0.74.

For small or zero damping we cannot use the previo
comparison arguments because the trailing edge of the t
eling wave front oscillates and monotonicity does not ho
there. If we look at the traveling wave front profiles, it b
comes clear that we should compare the monotone lea
edges of the fronts. Figure 7~a! and 7~b! depict the trajecto-
ries wn(t) and their time derivativeswn8(t) for a particular
traveling wave front. We observe thatwn21(t),wn(t)
,wn11(t) and wn218 (t),wn8(t),wn118 (t) up to a certain
time. Figure 7~c! shows the initial configurations forwn(0)
and the shifted waveswn(2t), wn(t). wn(0) is sandwiched
betweenwn(2t) and wn(t) up to a pointn0. Figure 7~d!
depicts the initial velocity profileswn8(0), wn8(2t) and
wn8(t). wn8(0) is sandwiched betweenwn8(2t), and wn8(t)
up to a pointn1 . n0 andn1 mark the onset of the oscillator
tails. In general, 0<n0<n1. As the wave advances, th
ranges of n for which wn(t2t),wn(t)5w(n2ct2 1

2 )
,wn(t1t) change witht.

FIG. 7. ~Color online! ~a! Trajectorieswn21(t) ~dash-dotted!,
wn(t) ~solid!, wn11(t) ~dashed!; ~b! same for wn218 (t), wn8(t),
wn11(t); ~c! initial configurations forwn(t) ~circles!, wn(0) ~aster-
isks!, wn(2t) ~squares!, the vertical line definesn0; ~d! same for
wn8(t), wn8(0), wn8(2t), the vertical lines definen1.
1-6
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The main result of this section is the following stabili
theorem, whose proof can be found in Appendix D:

Theorem.Let us select the wave front profile so th
wn(t)5w(n2ct2 1

2 ), with c,0 andF.0. Let T* be the
maximum time up to which the Green functionsGnk

0 (t) and
Gnk

1 (t) remain positive. We assume that the speeducu
.1/T* and choose the initial states for Eq.~2!, un

1 andun
0 , in

the set

wn~2t!,un
0,wn~t!, n<n0 , 0,t!

1

2ucu
, ~25!

wn8~2t!,un
1,wn8~t!, n<n1 ,

(
n

uun
02wn~0!u,e, (

n
uun

12wn8~0!u,e ~26!

for e.0 small andt,e. Then, we can find an increasin
sequence of timestk , k50,1, . . . ,with t2150, such that:

wn~ t2t!,un~ t !,wn~ t1t!, n<n02k,

wn8~ t2t!,un8~ t !,wn8~ t1t!, n<n12k ~27!

for tk21<t,tk . Furthermore, fort.0 and anyn, we have

uun~ t !2wn~ t !u<(
k

uGnk
1 ~ t !uuuk

02wk~0!u

1(
k

uGn0
0 ~ t !uuuk

12wk8~0!u1C~ t !,

~28!

C~ t !5 (
k<0,t>Tk2t

E
Tk2t

min(Tk1t,t)

Gnk
0 ~ t2z!dz,

in whichTk5k/ucu11/2ucu. Thus, the traveling wave front i
stable wheng50 or asymptotically stable wheng.0.

Let us clarify the meaning of Eq.~28!. For g.0, the
sums(kuGnk

1 (t)u, (kuGnk
0 (t)u decay exponentially with time

For small t, the function uC(t)u;2t(k<0,t>Tk2tuGnk
0 (t

2Tk)u. This sum is finite and decays with time. This e
plains our asymptotical stability claim. Wheng50, the
sums (kuGnk

1 (t)uuuk
02wk(0)u, (kuGnk

0 (t)uuuk
02wk(0)u are

bounded by a constant time maxkuuk
02wk(0)u1maxkuuk

0

2wk(0)u. The functionuC(t)u is bounded by a constant tim
t and is made small by choosingt small. This explains our
stability claim in the conservative case.

The inequalities~27! tell us that the leading edge of th
propagating kink is sandwiched between the leading edge
the shifted traveling wave frontswn(t1t) andwn(t2t). As
the kink un(t) advances, the timestk at which u2k(t)2 1

2

changes sign are bounded by the times at which the
vanced and delayed wave fronts cross1

2 : Tk2t<tk<Tk
1t. This fact is the key for obtaining the stability boun
~28!.
04660
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IV. COEXISTENCE

The results in Sec. III B indicate that stable static a
traveling kinks may coexist. The only restriction on the tra
eling kinks is the monotonicity of the leading edge and a l
bound on the speed. These conditions are satisfied by tra
ing wave fronts for a range of forces in which static wa
fronts also exist. We show in this section how oscillati
Green functions may force initial kinklike configuration
~which would be pinned for large damping! to evolve into a
traveling wave front provided the damping is small enoug

We fix F,Fcs and select the static kinksn constructed in
Sec. II for Eq.~2! with s0, 1

2 ,s1. Let the initial condition
for Eq. ~2! be a piecewise constant profile:un

05F for n
<0, un

0511F for n>1 andun
150. Let T* the maximum

time up to whichGnk
0 andGnk

1 remain positive.
As long asun(t)2 1

2 does not change sign for anyn, un(t)
is given by formula~7! in Sec. II. We have(kGnk

0 (t)uk
1>0

for t<T* . Initially, Gnk
1 (t) is concentrated atk5n and the

sign of (kGnk
1 (t)(uk

02sk) is decided by the sign ofun
0

2sn . If un
0.sn , un(t)>sn . In our case, this is true forn

>1. If un
0,sn , un(t) increases towardssn as (kGnk

1 (t)(uk
0

2sk) decays. By our choice of the initial state,u0(t) grows
faster than the other componentsun(t), n,0.

Now there are two possibilities depending on the value
the damping coefficients. For large damping,Gnk

1 (t) is posi-
tive for all times andGnk

0 decays fast. Thenu0(t) cannot
surpasss0. These initial data are pinned for large dampin

For small values of the damping,Gnk
1 (t) changes sign.

Thenu0(t) given by Eq.~7! may surpasss0 and 1
2 since the

term (kGnk
1 (t)(uk

02sk) becomes positive fort>T* . This
process can be iterated to get a stably propagating wave
Fig. 1. A prediction for the speed is found in this way: it
the reciprocal of the time thats01G00

1 (t)(F2s0) needs to
reach1

2 .

V. MORE GENERAL POTENTIALS

We have focused our study on periodic piecewise pa
bolic potentialsV(u)5u2/2, uuu, 1

2 . For these potentials
families of static and traveling wave fronts can be co
structed analytically. Schmidt@17# and later authors@18,19#
found exact monotone wave fronts of conservative syste
by constructing models with nonlinearities such that the
sired wave fronts were solutions of the models. For dam
Frenkel-Kontorova or quartic double-well potentials, stab
propagating wave fronts have been found numerically@10#.
Numerical studies of kink propagation in the conservat
Frenkel-Kontorova model were carried out in Ref.@14#.

The stability of propagating kinks in these models can
studied adapting the methods developed in this paper, bu
analysis is technically more complicated@16#. For instance,
taking V(u)5u2/2 for uuu, 1

2 , 1
4 2(u21)2/2 for uu21u

, 1
2 we get acontinuouspiecewise linear source

g~s!55
s, s,

1

2

2s1
1

2
,

1

2
,s,

3

2

s21, s>3/2.
1-7
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The arguments in Secs. III A and III B can be adapted
including new terms *0

t (1/2,uk,3/2Gnk
0 (t2z)@2uk(z)

2 1
2 #dz in the integral expressions~C1! and ~C2! and using

that the functionh(s)52s21/2 is increasing in 1/2,s
,3/2. Similarly, for a Frenkel-Kontorova potential, we wri
g(s)52as1@sin(s)1as#, a.0. Then, we find the integra
expression ~A12! with a nonlinear sourcef k52sin(uk)
1auk1F, using the Green functions for the linear opera
un91gun82D(un1122un1un21)1aun . The parametera is
chosen to ensure adequate monotonicity properties forh(s)
52sin(s)1as @16#.

VI. CONCLUSIONS

We have developed a nonlinear stability theory for wa
fronts in conservative and damped Frenkel-Kontorova m
els with piecewise linear sources based on integral form
tions. Our results provide an analytical basis for the disti
tion between static and dynamic Peierls stresses, which a
as thresholds for the existence of stable static and trave
wave fronts. With little or zero damping, stable propagat
of fronts is possible when their speeds surpass a crit
value. The corresponding wave front profiles have a mo
tone leading edge, and, possibly, an oscillatory wake. W
fronts can be oscillatory and yet stable. Whether slow w
fronts showing oscillations in the leading and trailing edg
are stable remains an open question@10#. It is remarkable
that high order quasicontinuum approximations such as th
by Rosenau@20# or by Boussinesq@21# have wave solutions
comparable to the fast waves of the discrete conserva
model @12#.

Together with the stability theory we have presented
algorithm for the numerical computation of the dynamics
kinks. Our scheme has good stability properties and avo
distortions originated by artificial boundary conditions a
time discretization.
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APPENDIX A: GREEN FUNCTIONS

We want to find an integral representation of the solut
of the problem

un91gun85D~un1122un1un21!2un1 f n , ~A1!

un~0!5un
0 , un8~0!5un

1 ~A2!

with g>0,D.0. Firstly, we get rid of the difference opera
tor by using the generating functionsp(u,t), f (u,t):

p~u,t !5(
n

un~ t !e2 inu, f ~u,t !5(
n

f n~ t !e2 inu.

~A3!
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Differentiatingp with respect tot and using Eq.~A1!, we see
that p solves the ordinary differential equation

p9~u,t !1gp8~u,t !1v~u!2p~u,t !5 f ~u,t !, ~A4!

wherev(u)25114D sin2(u/2) and the obvious initial con-
ditions for p(u,t) follow from those forun(t).

The solutionp depends on the roots of the polynomi
r 21gr 1v(u)250. Wheng2/4.v2(u),

p~u,t !5p~u,0!
er 2(u)tr 1~u!2er 1(u)tr 2~u!

r 1~u!2r 2~u!

1p8~u,0!
er 1(u)t2er 2(u)t

r 1~u!2r 2~u!

1E
0

t er 1(u)(t2s)2er 2(u)(t2s)

r 1~u!2r 2~u!
f ~u,s!ds ~A5!

with r 6(u)5(2g6Aa(u))/2,0 anda(u)5g224v(u)2.
Wheng2/4,v2(u), the roots are complex:

p~u,t !5p~u,0!e(2g/2)tFcos@ I ~u!t#1
g sin@ I ~u!t#

2I ~u! G
1p8~u,0!e(2g/2)t

sin@ I ~u!t#

I ~u!

1E
0

t

e(2g/2)(t2s)
sin@ I ~u!~ t2s!#

I ~u!
f ~u,s!ds,

~A6!

whereI (u)5A2a(u)/2. Wheng2/45v2(u),

p~u,t !5p~u,0!e(2g/2)tS 11
g

2
t D1p8~u,0!e(2g/2)tt

1E
0

t

~ t2s!e(2g/2)(t2s) f ~u,s!ds. ~A7!

The solutionun(t) of Eq. ~A1! is recovered from the defi
nition ~A3!:

un~ t !5E
2p

p du

2p
einup~u,t !. ~A8!

Here,p(u,t) is defined by Eq.~A5! whenuPI 1,

I 15H uP@2p,p#U g2

4
.v2~u!J , ~A9!

by Eq. ~A6! whenuPI 2,

I 25H uP@2p,p#U g2

4
,v2~u!J , ~A10!

and by Eq.~A7! whenuPI 3,

P5H uP@2p,p#U g2

5v2~u!J . ~A11!

4

1-8



e
y

o

ay

the

r

r

NONLINEAR STABILITY OF OSCILLATORY WAVE . . . PHYSICAL REVIEW E 69, 046601 ~2004!
Notice thatI 15P5B if g2,4 and I 25P5B if g2.4(1
14D). PÞB only if 4(114D),g2,4 and it then consists
of two points.

Formula~A8! can be rewritten as

un~ t !5(
k

@Gnk
0 ~ t !uk8~0!1Gnk

1 ~ t !uk~0!#

1E
0

t

(
k

Gnk
0 ~ t2s! f k~s!ds, ~A12!

where

Gnk
0 ~ t !5E

2p

p du

2p
ei (n2k)ug0~u,t !,

Gnk
1 ~ t !5E

2p

p du

2p
ei (n2k)ug1~u,t ! ~A13!

with

g0~u,t !55
er 1(u)t2er 2(u)t

r 1~u!2r 2~u!
, uPI 1

e(2g/2)tt, uPP

e(2g/2)t
sin@ I ~u!~ t !#

I ~u!
, uPI 2 ,

~A14!

g1~u,t !55
er 2(u)tr 1~u!2er 1(u)tr 2~u!

r 1~u!2r 2~u!
, uPI 1

e(2g/2)tS 11
g

2
t D , uPP

e(2g/2)tFcos@ I ~u!t#1
g sin@ I ~u!t#

2I ~u! G , uPI 2 .

~A15!

For conservative chains,g50, Gnk
1 5dGnk

0 /dt, and

Gnk
0 ~ t !5E

2p

p du

2p

ei (n2k)u

v~u!
sin@v~u!t#. ~A16!

Green functions for Hamiltonian chains were studied in R
@22# and earlier in Ref.@23#. For overdamped chains, the
were computed in Ref.@13#.

APPENDIX B: PROPERTIES OF THE GREEN FUNCTIONS

The Green functions for Eq.~A1! and ~A2! have three
relevant properties: they decay in time, they decay asun
2ku→`, and are positive for some time. The property
spatial decay follows from integration by parts in Eq.~A13!:

Gnk
0 ~ t !5

~21! l

i l~n2k! l E
2p

p du

2p
ei (n2k)u

] lg0~u,t !

]u l ,

Gnk
1 ~ t !5

~21! l

i l~n2k! l E
2p

p du

2p
ei (n2k)u

] lg1~u,t !

]u l ~B1!
04660
f.

f

whennÞk. An immediate consequence is that(kuGnk
0 (t)up

and(kuGnk
1 (t)up are finite for anyp>1. Therefore, we may

obtain decay results asunu→` for the solutionsun(t) of Eqs.
~A1! and~A2! given by Eq.~A12! decay when the dataun

0 ,
un

1 , f n(t) decay. Figures 8 and 9 illustrate the spatial dec
of Gn

0(t)5Gn0
0 (t) andGn

1(t)5Gn0
1 (t). Notice that, initially,

both are concentrated aboutn50.
Time decay and positivity depend on the strength of

damping. Let us start by thestrongly damped case:g2

.4(114D). The Green functions are given by Eqs.~A13!–
~A15! with I 25P5B.

~1! Gnk
0 (t) and Gnk

1 (t) are positive.The rootsr 6(u) being
even with respect tou, bothGnk

0 (t) andGnk
1 (t) are real and

ei (n2k)u can be replaced by cos@(n2k)u#. The kernels
g0(u,t)5(er 1(u)t2er 2(u)t)/@r 1(u)2r 2(u)# and g1(u,t)

FIG. 8. ~Color online! Time evolution of the Green functions fo
D54 and g510: ~a! t50, ~b! t50.5, ~c! t55; ~d! t50, ~e! t
50.5, ~f! t55.

FIG. 9. ~Color online! Time evolution of the Green functions fo
D54 andg52.2: ~a! and~d! t50.5, ~b! and~e! t52.5, ~c! and~f!
t55.
1-9
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5(er2(u)tr1(u)2er1(u)tr2(u))/@r1(u)2r2(u)# are even, posi-
tive, reach their maximum values atu50, and decay asu
increases top. The dominant contribution to the integra
~A13! comes from a neighborhood centered atu50, where
the oscillatory multiplier cos@(n2k)u# is positive. Thus, both
Gnk

0 (t) andGnk
1 (t) are positive. Figure 8 illustrates their evo

lution as time grows. Notice the resemblance with the ti
evolution of heat kernels.

~2! Gnk
0 (t) and Gnk

1 (t) are bounded uniformly inn,k by
decaying exponentials in time:

uGnk
0 ~ t !u<

er 1(0)t2er 2(p)t

Ag224~114D !
,

uGnk
1 ~ t !u<

er 2(p)tr 1~p!2er 1(0)tr 2~0!

Ag224~114D !
. ~B2!

We come now to intermediate damping4,g2,4(1
14D). In this case bothI 1 andI 2 are nonempty. The piece
wise defined kernelsg0 andg1 are still even, take the larges
values near zero~in I 1) and the smallest nearp ~in I 2). The
dominant contribution toGnk

0 (t) andGnk
1 (t) comes thus from

I 1 and is positive. This is helped by the fact that the con
bution coming fromI 2 is initially positive and the factor
e2(g/2)t in the oscillatory regionI 2 decays faster than th
factorer 1(u)t in the positive regionI 1. Therefore,Gnk

0 (t) and
Gnk

1 (t) are essentially positive in this intermediate regim
see Fig. 9. This means that their large components are p
tive, despite the appearance of some negligible nega
components. They can be roughly bounded by

uGnk
0 ~ t !u<C0er 1(0)t, uGnk

1 ~ t !u<C1er 1(0)t. ~B3!

We address finally theweakly damped problems withg2

,4. In this case,I 15P5B. Gnk
0 (t) and Gnk

1 (t) are no
longer globally positive. However, the kernelsg0(u,t) and
g1(u,t) are positive forutu,2p/A4(114D)2g252T and
utu,p/A4(114D)2g25T, respectively. That means tha
Gnk

0 (t).0 andGnk
1 (t).0 for t in those intervals. They re

main essentially positive in a larger interval. The kern
g0(u,t) and g1(u,t) become negative foru nearp and re-
main positive for smallu. This is enough for the relevan
values ofGnk

1 (t) to remain positive up to a critical timeT* ,
often larger thanT. We can get uniform bounds in time:

uGnk
0 ~ t !u<

2

A42g2
e2(g/2)t,

uGnk
1 ~ t !u<S 11

g

A42g2D e2(g/2)t. ~B4!

The same positivity properties and bounds are shared by
Green functions in theconservative caseg50. Figures 10
and 11 illustrate the time evolution of the Green functions
detailed study of the decay properties with respect ton andt
for conservative problems can be found in Ref.@22#.
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APPENDIX C: STABILITY OF TRAVELING WAVE FRONTS
FOR STRONG DAMPING

We now prove the stability theorem of Sec. III A fo
strong damping. The key idea of the proof is suggested
formula ~5!. When we solve Eq.~2! starting from different
steplike initial states, we observe three types of terms in
~5!. The second and the third are increasing functions of
steplike configurations. The fourth term does not depend
the initial configuration. The first one can be made small
choosing a small velocity profile. Our proof proceeds in tw
steps. First, we establish a few properties of the trave
wave fronts. Second, we prove the stability bound~24!.

Step 1: Basic properties of the traveling waves.For every
k, we know thatwk8(t).0. Thus, eachwk(t) crosses1

2 at a
definite time tk . Recall that we have selected the uniq
wave profilew(x) satisfying w(0)5 1

2 . Therefore,w2k(t)

FIG. 10. ~Color online! Time evolution of the Green function
for D54 andg51: ~a! t50, ~b! t50.5, ~c! t52.5; ~d! t50.5, ~e!
t52.5, ~f! t55.

FIG. 11. ~Color online! Time evolution of the Green function
for D54 andg50: ~a! and~d! t50.05, ~b! and~e! t50.5, ~c! and
~f! t52.5.
1-10
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21
2 changes sign at timeTk5k/ucu11/2ucu.0, k

50,1,2, . . . . For theshifted waveswk(t1t) and wk(t2t)
the changes of sign take place at the shifted timesTk

15Tk

2t andTk
25Tk1t.

The waveswn(t6t) solve the integral equation~5! with
initial data wn(6t) and wn8(6t). Using the timesTk

6 , we
can rewrite formula~5! in a more explicit form:

wn~ t6t!5(
k

@Gnk
0 ~ t !wk8~6t!1Gnk

1 wk~6t!#

1FE
0

t

(
k

Gnk
0 ~ t2z!dz1E

0

t

(
k.0

Gnk
0 ~ t2z!dz

1 (
k<0

E
Tk

6

Max(t,Tk
6)

Gnk
0 ~ t2z!dz. ~C1!

A term *T
k
6

t
Gn,k

0 (t2z)dz is added whenever a factorwk(z

6t)2 1
2 changes sign.

Step 2: Comparing un(t) and wn(t6t). During the initial
stage of the evolution of the chainu0(t), 1

2 ,u1(t) and for-
mula ~5! reads

un~ t !5(
k

@Gnk
0 ~ t !uk

11Gnk
1 ~ t !uk

0#1E
0

t

(
k.0

Gnk
0 ~ t2z!dz

1FE
0

t

(
k

Gnk
0 ~ t2z!dz. ~C2!

By Eq. ~22! and the positivity ofGnk
1 (t),

(
k

Gnk
1 ~ t !wk~2t!,(

k
Gnk

1 ~ t !uk
0,(

k
Gnk

1 ~ t !wk~t!.

~C3!

By Eq. ~23!,

(
k

Gnk
1 ~ t !@wk~t!2uk

0#1Gnk
0 ~ t !@wk8~t!2uk

1#.0,

(
k

Gnk
1 ~ t !@uk

02wk~2t!#1Gnk
0 ~ t !@uk

12wk8~2t!#.0.

~C4!

Therefore, Eqs.~C1!–~C4! imply

wn~ t2t!,un~ t !,wn~ t1t!, ~C5!

for all n and t<T0
1 . Recall thatT0

1<T0
2 by definition. Af-

terwards,w0(t1t) has crossed1
2 and *T

0
1

t
Gn0

0 (t2z)dz.0

must be added in the expression forwn(t1t). The ordering
~C5! still holds. At time T0

2 , w0(t2t) crosses1
2 . By Eq.

~C4!, u0(t) must cross before, at a timet0.
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In this way, we obtain a sequence of timestk at which
u2k(t)2 1

2 , changes sign satisfyingTk
1,tk,Tk

2 , k
50,1,2, . . . . Then,

un~ t !5(
k

@Gnk
0 ~ t !uk

11Gnk
1 ~ t !uk

0#1FE
0

t

(
k

Gnk
0 ~ t2z!dz

1E
0

t

(
k.0

Gnk
0 ~ t2z!dz1 (

k<0
E

tk

Max(t,tk)

Gnk
0 ~ t2z!dz

~C6!

and Eq.~C5! holds for all t. Our stability claim is proved.

APPENDIX D: STABILITY OF TRAVELING WAVE
FRONTS FOR CONSERVATIVE DYNAMICS

In this section, we prove the stability theorem of Se
III B for small or zero damping. The notation is the same
in Appendix C and the proof is organized in two steps.

Step 1: Initial stage.We compareun(t) given by Eq.~C2!
with the shifted waveswn(t6t) given by Eq.~C1!, whereas
un8(t) is compared withwn8(t6t). The time derivatives are
calculated by differentiating Eqs.~C1! and~C2!. Notice that
dGnk

0 (t)/dt.0 for small damping whent<T* . Up to a first
critical time T0

1 , uk(t)2 1
2 andwk(t6t)2 1

2 keep their sign
for all k. Therefore,

wn~ t2t!,un~ t !,wn~ t1t!, n<n0 ,

wn8~ t2t!,un8~ t !,wn8~ t1t!, n<n1 , ~D1!

for t<T0
1 . Recall that, initially,Gnk

1 andGnk
0 , together with

their derivatives, take on their maximum values fork close to
n. This fact and Eqs.~24! and ~25! imply

wn~ t2t!,un~ t !,wn~ t1t!, n<n021,

wn8~ t2t!,un8~ t !,wn8~ t1t!, n<n121, ~D2!

for T0
1<t<T1

1 , choosing t,T* 2T0 . This means that
u0(t)2 1

2 changes sign at a timet0 such thatT0
1,t0,T0

2

,T1
1 . We then obtain formula~C6! for un(t) restricted to

t<T1
1 . By substracting Eq.~C1! from Eq. ~C6!, we find

(
n

uun2wnu~ t !<(
n

uGn0
1 ~ t !u(

n
uun2wnu~0!

1(
n

uGn0
0 ~ t !u(

n
uun82wn8u~0!1C~ t !,

~D3!

where
1-11
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C~ t !5H 0, t<T0
1

E
T0

1

T0
2

Gn0
0 ~ t2z!dz, t.T0

1 ,

and

(
n

uun82wn8u~ t !<(
n

UdGn0
1

dt
~ t !U(

n
uun2wnu~0!

1(
n

UdGn0
0

dt
~ t !U(

n
uun82wn8u~0!1R~ t !,

~D4!

where

R~ t !5H 0, t<T0
1

E
T0

1

T0
2dGn0

0

dt
~ t2z!dz, t.T0

1 ,

for t<T1
1 . Let S15Max[0,`)(nuGn0

1 (t)u, S2

5Max[0,`)(nuGn0
0 (t)u, S35Max[0,`)(nu(dGn0

1 /dt)(t)u, and
S45Max[0,`)(nu(dGn0

0 /dt)(t)u. Then, fort<T1
1 ,

(
n

uun~ t !2wn~ t !u<~S11S2!«12tuGn0
0 ~T0!u,

(
n

uun8~ t !2wn8~ t !u<~S31S4!«12tUdGn0
0

dt
~T0!U.

~D5!

The distancesuun(t)2wn(t)u, uun8(t)2wn8(t)u remain of or-
der «. In particular, the oscillatory tail ofun(t) for n.n0 is
contained in the same band that containswn(t) for n.n0.

Step 2: Generic stage.We iterate Step 1 starting at time
Tl

1 , l 51,2, . . . , according to the following induction pro
cedure. For a fixedTl

1 , Eq. ~D2! holds for n,n02 l , n
,n12 l , Tl 21

1 <t<Tl
1 , and

(
n

uun~ t !2wn~ t !u<~S11S2!«12tS,

(
n

uun8~ t !2wn8~ t !u<~S31S4!«12tS ~D6!

holds for t<Tl
1 , with S5Max@(kuGnk

0 (Tk)u,(ku(dGnk
0 /dt)

3(Tk)u#. Now, we shall show that these properties also h
for Tl 11

1 .
For Tl

1<t<Tl 11
1 , the evolution ofwn(t6t) andun(t) is

given by
04660
d

wn~ t6t!5(
k

Gnk
0 ~ t2Tl

1!wk8~Tl
16t!

1(
k

Gnk
1 ~ t2Tl

1!wk~Tl
16t!

1FE
Tl 21

2

t

(
k

Gnk
0 ~ t2z!dz

1E
Tl

1

t

(
k.2 l

Gnk
0 ~ t2z!dz

1 (
k<2 l

E
Tk

6

Max (t,Tk
6)

Gnk
0 ~ t2z!dz, ~D7!

un~ t !5(
k

Gnk
0 ~ t2Tl

1!uk8~Tl
1!1(

k
Gnk

1 ~ t2Tl
1!uk~Tl

1!

1FE
Tl

1

t

(
k

Gnk
0 ~ t2z!dz1E

Tl
1

t

(
k.2 l

Gnk
0 ~ t2z!dz

1 (
k<2 l

E
Tl

1

t

Gnk
0 ~ t2z!HFuk~z!2

1

2Gdz. ~D8!

Notice that we have taken as initial data the values ofwn(t
6t) andun(t) at timeTl

1 . In this way, formulas~D7! and
~D8! only involve the values of the Green functions in
short time interval@0,1/ucu12t#. Since 1/ucu12t.T* , the
Green functions are both positive. Recall that for this sh
time intervalGnk

1 and Gnk
0 , together with their derivatives

take on large values fork close ton. We can then use Eq
~D2! for n,n02 l , n,n12 l at time Tl

1 , Eqs. ~D6!–~D8!
to obtain Eq.~D2! for n,n02( l 11), n,n12( l 11), and
Tl

1<t<Tl 11
1 . This means thatu2 l(t)2 1

2 changes sign at a
time t l such thatTl

1,t l,Tl
2,Tl 11

1 . We then obtain for-
mula ~C6! for un(t) restricted tot<Tl 11

1 . Subtracting Eq.
~C1! from Eq. ~C6! for t<Tl 11

1 , we find

(
n

uun2wnu~ t !<~S11S2!«12t (
k< l

uGnk
0 ~Tk!u,

(
n

uun82wn8u~ t !<~S31S4!«12t (
k< l

UdGnk
0

dt
~Tk!U.

~D9!

This implies Eq.~D6! for t<Tl 11
1 . We are now ready to

repeat the process starting at timeTl 11
1 .

Step 3: Conclusion.From Step 2 we obtain a sequence
times t l for l 51,2, . . . , with Tl

1,t l,Tl
2 , at whichu2 l(t)

2 1
2 changes sign. In this way, we keep track of the timest l

at which changes of sign take place and obtain formula~C6!
for un(t) for all t. Subtracting Eq.~C1! from Eq. ~C6! we
find the bound~28! on uun2wnu.
1-12
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